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1 Introduction

Precision predictions in perturbative Quantum Chromodynamics (QCD) at colliders de-

mand calculating physical observables beyond leading order (LO) accuracy and, in the

traditional approach to higher order predictions with fully differential kinematics, real

and virtual corrections are separately evaluated. Integration over the phase space then

requires a consistent treatment of the infrared singularities before any numerical compu-

tation may be performed. At next-to-leading order (NLO), infrared divergences can be

handled using a subtraction scheme, which exploits the universal structure of the kine-

matical singularities of QCD matrix elements. The necessary (process-independent) coun-

terterms regularize the virtual corrections at one loop and the real emission phase space

integrals simultaneously [1].

At next-to-next-to-leading order (NNLO), the calculation of the radiative corrections

to fully differential cross sections is a challenging problem and various extensions of the

subtraction method at NNLO have been proposed, see e.g. refs. [2–5]. Currently, the avail-

able results for electron-positron annihilation at NNLO include total rates [6–8] and event

shapes [9, 10] for the process e+e− → 3 jets and are all based on the antenna subtraction

method [11–13]. On the other hand for colorless final states, such as vector boson or Higgs

boson production at hadron colliders dedicated subtraction schemes at NNLO [14, 15] have

been applied. The infrared structure of scattering processes with three or more colored par-

tons is involved if calculated at NNLO with the antenna subtraction method [16] — a fact
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which has motivated the formulation of alternative subtraction schemes. In particular,

refs. [17–19] introduce a scheme for computing NNLO corrections to QCD jet cross sec-

tions for processes without colored partons in the initial state and an arbitrary number of

massless particles (colored or colorless) in the final state. Very recently, following the steps

of ref. [17], this subtraction scheme has been extended to cross sections for hadron-initiated

processes [20], although yet to NLO accuracy only, but in a way which is NNLO-compatible.

Any subtraction scheme is of practical utility only after the counterterms for the regu-

larization of the real emissions are integrated over the phase space of the unresolved partons.

In the scheme of refs. [17–19] these counterterms are universal (but complete only for pro-

cesses without colored particles in the initial state) and, therefore can be computed once

and for all. Their knowledge is necessary to regularize the infrared divergences appearing in

the virtual corrections. Some of the integrals needed explicitly in the so-called real-virtual

counterterms of this scheme have been calculated in refs. [21, 22]. In the present paper we

complete this task by computing all integrals needed for the the real-virtual counterterms

in the subtraction scheme of refs. [17–19] by means of Mellin-Barnes (MB) representations.

The use of MB integrals when dealing with Feynman integral calculus has proved powerful

in the last years. MB integrals were first applied to Feynman integrals in refs. [23, 24]

and pioneering work has been performed since then in refs. [25–27] (see also ref. [28] and

references therein for many other examples). For a given integral the MB representation

replaces the power of a sum in the integrand by a product of the individual terms of the sum

raised to some other powers. This leads then to integrals over certain complex contours

of Γ-functions. As a crucial point it is then very convenient with this MB representation

to resolve all singularities in the limit ǫ = 0 within dimensional regularization, d = 4 − 2ǫ.

In this paper, we adapt the MB method to derive analytic expressions for all integrals

appearing in the real-virtual counterterms of refs. [17–19].

Let us briefly discuss the merits of the analytic approach for the computation of the

integrated subtraction terms. First of all, in a higher-order computation, the ǫ poles of the

integrated subtraction terms need to cancel the corresponding ǫ poles coming from the loop

matrix elements in the virtual corrections. The cancellation of these poles can be demon-

strated most convincingly once the pole structure of the integrated subtraction terms is

exhibited analytically. Second, in terms of speed and precision of the evaluation, analytic

results are very fast and very accurate compared to numerical ones. Moreover, they demon-

strate that the final result consists of smooth functions only. Nevertheless also the numerical

evaluation of the integrated counterterms has its utility, because it serves as an independent

check. Then, there are indeed some cases, where it is very difficult to find the analytic com-

putation of the multi-dimensional MB integral and only the complex numerical integration

can be carried out. In these cases, however, the method of MB integrals provides a fast and

reliable way to obtain the final results with small numerical uncertainties. From a practical

point of view, the combination of both, analytic and numerical evaluations of all MB inte-

grals implies that the final results for the integrated real-virtual counterterms can be conve-

niently given e.g. in the form of interpolating tables which can be computed once and for all.

This suffices for any practical application, because in an actual computation the rela-

tive uncertainty associated with the numerical phase space integrations is generally much

greater than that of the integrated subtraction terms.
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Figure 1. Graphical representations of the momentum mappings and the implied phase space

factorization: collinear (left) and soft momentum mapping (right).

The outline of the paper is the following. In section 2 we briefly review the phase

space integrals of the real-virtual corrections at NNLO and we define the integrals of the

subtraction terms that we will consider in this paper. In section 3 we present a brief

explanation of the method of MB representations. We outline the steps of our calculation

and we also discuss explicitly an example to display the typical structure of the integrals we

are interested in. In section 4 we complete the analytic evaluation of all integrals needed

for integrated collinear counterterms. Next, in sections 5–7 we compute also all different

types of the nested integrals. Finally in section 8 we present the conclusions of this work.

2 Integrals needed for the integrated subtraction terms

The subtraction method developed in refs. [18, 19] relies on the universal soft and collinear

factorization properties of QCD squared matrix elements. Once the subtraction scheme is

defined, one has to integrate the subtraction terms over the factorized phase space of the

unresolved parton(s). This is the content of the present work (see also ref. [21]).

There are two crucial elements in the formulation of a subtraction scheme beyond

NLO. Firstly, the factorization formulae should disentangle the overlaps in soft-singular

factors and collinear singularities in order to avoid multiple subtractions and a simple

solution to this problem has been given in ref. [30]. Secondly, because the factorization

formulae are valid only in the strict soft and collinear limits, they have to be extended

to the whole phase space. Typically, this requires a mapping of the original n momenta

{p}n = {p1, . . . , pn} in an n-parton matrix element at any order in perturbation theory to

m momenta {p̃}m = {p̃1, . . . , p̃m} in such a way, that momentum conservation is preserved.

Here m denotes the number of hard partons and n−m is the number of unresolved ones.

The original n-particle phase space of total momentum Q reads

dφn(p1, . . . , pn;Q) =

n∏

i=1

ddpi

(2π)d−1
δ+
(
p2

i

)
(2π)dδ(d)

(
Q−

n∑

i=1

pi

)
, (2.1)

and, for a given mapping, one obtains the phase-space factorization as

dφn({p}n;Q) = dφm({p̃}m;Q) [dpn−m;m({p}n−m;Q)] , (2.2)

which was first introduced in ref. [1] in the context of computing QCD corrections at NLO.

In this paper we are concerned with the integrals of the singly-unresolved counterterms
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δ Function g
(±)
I (z)

0 gA 1

∓1 g
(±)
B (1 − z)±ǫ

0 g
(±)
C (1 − z)±ǫ

2F1(±ǫ,±ǫ, 1 ± ǫ, z)

±1 g
(±)
D 2F1(±ǫ,±ǫ, 1 ± ǫ, 1 − z)

Table 1. The values of δ and g
(±)
I (zr) for which eq. (2.5) needs to be evaluated.

(i.e. the case m = 1), which imply two types of mappings:

{p}n
Cir−→ {p̃}(ir)

n−1 = {p̃1, . . . , p̃ir, . . . , p̃n} , (2.3)

{p}n
Sr−→ {p̃}(r)

n−1 = {p̃1, . . . , p̃n} . (2.4)

In the collinear momentum mapping
Cir−→ in eq. (2.3) the momenta pµ

i and pµ
r are replaced by

a single momentum p̃µ
ir and all other momenta are rescaled, while for soft-type subtractions,

Sr−→ in eq. (2.4) the momentum pµ
r , that may become soft, is missing from the set, and all

other momenta are rescaled and transformed by a proper Lorentz transformation. Both

momentum mappings and the corresponding factorization of the phase-space measure are

represented graphically in figure 1, where the symbol ⊗ stands for the convolution as

implied by eq. (2.2). The integration of the singly-unresolved subtraction terms requires

three basic types of integrals over the corresponding factorized phase space, as well as

iterations of these (nested integrals are denoted by a ∗). All necessary integrals were

derived in refs. [21, 22].

2.1 Basic integrals

The three basic integrals are those used in the collinear, soft and soft-collinear subtraction

counterterms. The collinear integrals have the general form

I
(
x; ǫ, α0, d0;κ, k, δ, g

(±)
I

)
= x

∫ α0

0
dαα−1−(1+κ)ǫ (1 − α)2d0−1 [α+ (1 − α)x]−1−(1+κ)ǫ

×
∫ 1

0
dv[v (1−v)]−ǫ

(
α+(1−α)xv

2α+(1−α)x

)k+δǫ

g
(±)
I

(
α+(1−α)xv

2α+ (1−α)x

)
. (2.5)

These integrals need to be known as a function of x ∈ [0, 1] in a Laurent-expansion

in ǫ for k = −1, 0, 1, 2. The necessary values of δ and the expressions for the functions

g
(±)
I are given in table 1. Here κ = 0, 1 for the first row and κ = 1 for all other cases.

Analytic expressions for all cases corresponding to the first two rows of table 1 were derived

in ref. [21] and contain the first five terms in the ǫ-expansion. We compute all cases anew

and present our results explicitly in section 4. The other parameters α0 ∈ (0, 1] and d0 in

eq. (2.5) will be specified in section 3. Our analytic results for these integrals include all

the coefficients of the poles in ǫ and the first three terms in the ǫ-expansion.
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Next, the soft subtractions require the integral

J (Yĩk̃,Q; ǫ, y0, d
′
0;κ) = −(4Yĩk̃,Q)1+κǫ Γ2(1 − ǫ)

2πΓ(1 − 2ǫ)
Ω(1+κǫ,1+κǫ)(cosχ)

×
∫ y0

0
dy y−1−2(1+κ)ǫ(1 − y)d

′

0
+κǫ , (2.6)

as a function of Yĩk̃,Q ∈ [0, 1] in a Laurent expansion around ǫ = 0, where Ω(i,k)(cosχ)

denotes the angular integral in d-dimensions

Ω(i,k)(cosχ) =

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

×(1 − cos ϑ)−i(1 − cosχ cos ϑ− sinχ sinϑ cosϕ)−k , (2.7)

with

cosχ = 1 − 2Yĩk̃,Q . (2.8)

For the present paper the exact definition of the kinematic variables x and Yĩk̃,Q is

unimportant, nevertheless we recall their definition to make their physical meaning explicit.

The kinematic variable x is given by

x =
2p̃ir ·Q
Q2

, (2.9)

where p̃ir is the momentum of the parent parton in the (ir) → i+r splitting, which appears

on the right hand side of eq. (2.3) above, while Q is the total incoming momentum. We

note that in the strict collinear limit we have p̃ir → pi + pr. The kinematic variable Yĩk̃,Q

is defined as

Yĩk̃,Q =
1

2

Q2(p̃i · p̃k)

(p̃i ·Q) (p̃k ·Q)
(2.10)

Finally, the soft-collinear subtractions lead to the integral

K(ǫ, y0, d
′
0;κ) = 2

∫ y0

0
dy y−(2+κ)ǫ(1 − y)d

′

0
−1

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

×
[
1+

2(1 − y)

y(1−cos ϑ)

]1+κǫ Γ2(1 − ǫ)

2πΓ(1−2ǫ)

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ , (2.11)

which does not depend on kinematical variables. The integrals J and K in eqs. (2.6)

and (2.11) have been computed in ref. [21] for all relevant parameters in y0, d
′
0 and κ. We

have evaluated these soft and soft-collinear integrals, too, and we have checked that the

two results agree numerically. We do not deal with the cases J and K in this paper.

2.2 Nested integrals

In a NNLO computation, also iterations of the above integrals appear. In this paper we

complete the list of nested integrals necessary for the integrated real-virtual counterterms,

in particular we cover all cases which have not been addressed in ref. [21].

– 5 –
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Of the nested integrals, which we generally denote by a star ∗, three are collinear

integrals with one of the basic types in its argument,

I∗Ii(x; ǫ, α0, d0; k, l) = x

∫ α0

0
dα

∫ 1

0
dv α−1−ǫ (1 − α)2d0−1 [α+ (1 − α)x]−1−ǫ

×[v(1 − v)]−ǫ

[
α+(1−α)xv

2α+(1−α)x

]k

I
(
x
α+(1−α)x(1−v)

2α+(1−α)x
; ǫ, α0, d0; 0, l, 0, 1

)
, (2.12)

I∗Ir(x; ǫ, α0, d0; k, l) = x

∫ α0

0
dα

∫ 1

0
dv α−1−ǫ (1 − α)2d0−1 [α+ (1 − α)x]−1−ǫ

×[v(1 − v)]−ǫ

[
α+ (1 − α)xv

2α+ (1 − α)x

]k

I
(
x
α+ (1 − α)xv

2α+ (1 − α)x
; ǫ, α0, d0; 0, l, 0, 1

)
, (2.13)

which we need for k, l = −1, 0, 1, 2, and

I∗J
(
x; ǫ, α0, d0, y0, d

′
0; k
)

= x

∫ α0

0
dα

∫ 1

0
dv α−1−ǫ (1−α)2d0−1 [α+ (1 − α)x]−1−ǫ (2.14)

×[v(1 − v)]−ǫ

[
α+ (1 − α)xv

2α+ (1 − α)x

]k

×J
(

α(α + (1 − α)x)(2α + (1 − α)x)2

(α+(1−α)xv)(α+(1−α)x(1−v))x2
; ǫ, y0, d

′
0, 0

)
,

for k = −1, 0, 1, 2. Both, I∗I and I∗J are needed as a function of x ∈ [0, 1] in an ǫ-expansion

with I and J given in eqs. (2.5) and (2.6), respectively. A discussion about the choice of

the relevant parameters α0, d0, y0 and d′0 is given at the end of section 3 and details of the

computation are also given in section 5.

Three other iterated integrals are defined as soft integrals with other soft integrals

appearing in the argument,

J∗Jik(Yĩk̃,Q; ǫ, y0, d
′
0) = −8Yĩk̃,Q

Γ2(1 − ǫ)

2πΓ(1 − 2ǫ)

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

×
∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ(1 − cos ϑ)−1

×
∫ y0

0
dy y−1−2ǫ(1 − y)d

′

0 [2 − (1 + cosχ) cos ϑ− sinχ sinϑ cosϕ]−1

×J
(

4(1 − y)Yĩk̃,Q

[2 − y(1 + cos ϑ)][2−y(1+cos χ cos ϑ+sinχ sinϑ cosϕ)]
; ǫ, y0, d

′
0, 0

)
,

(2.15)

J∗Jir(Yĩk̃,Q; ǫ, y0, d
′
0) = −8Yĩk̃,Q

Γ2(1 − ǫ)

2πΓ(1 − 2ǫ)

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ

×
∫ 1

−1
d(cosϕ)(sinϕ)−1−2ǫ (1 − cos ϑ)−1

×[2 − (1 + cosχ) cos ϑ− sinχ sinϑ cosϕ]−1

×
∫ y0

0
dy y−1−2ǫ(1 − y)d

′

0 J
(

(1 − cos ϑ)

2 − y(1 + cos ϑ)
; ǫ, y0, d

′
0, 0

)
, (2.16)

– 6 –
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and

J∗Jkr(Yĩk̃,Q; ǫ, y0, d
′
0) = −8Yĩk̃,Q

Γ2(1 − ǫ)

2πΓ(1 − 2ǫ)

∫ 1

−1
d(cos ϑ) (sinϑ)−2ǫ (2.17)

×
∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ(1 − cos ϑ)−1

×
∫ y0

0
dy y−1−2ǫ(1−y)d′0 [2−(1+cos χ) cos ϑ−sinχ sinϑ cosϕ]−1

×J
(

(1 − cosχ cos ϑ− sinχ sinϑ cosϕ)

2 − y(1 + cosχ cos ϑ+ sinχ sinϑ cosφ)
; ǫ, y0, d

′
0, 0

)
,

with J given in eq. (2.6). The three integrals in eqs. (2.15)–(2.17) need to be calculated

for Yĩk̃,Q ∈ [0, 1] as expansion in ǫ. Explicit results and details of the computation (and

values for the parameters y0 and d′0) for these integrals are presented in sections 3 and 6.

The final case is when the soft integral appears in the argument of a soft-collinear one,

K∗J(ǫ, y0, d
′
0) = 2

Γ2(1 − ǫ)

2πΓ(1 − 2ǫ)

∫ 1

−1
d(cosϑ) (sin ϑ)−2ǫ

×
∫ 1

−1
d(cosϕ) (sinϕ)−1−2ǫ

∫ y0

0
dy y−1−2ǫ (1 − y)d

′

0
−1

×2 − y(1 + cos ϑ)

1 − cos ϑ
J
(

1 − cos ϑ

2 − y(1 + cosϑ)
; ǫ, y0, d

′
0, 0

)
, (2.18)

which is again independent of the kinematics, i.e. the coefficients of the expansion in ǫ

are pure numbers. Details of the computation and the parameters y0 and d′0 are given in

sections 3 and 7.

3 The method of Mellin-Barnes representations

In this section we briefly review the essential steps in the derivation of MB representations

for the integrals of sections 2.1 and 2.2. The starting point is the well known basic formula,

1

(a+ b)ν
=

1

Γ(ν)

∫ q+i∞

q−i∞

dz

2πi
a−ν−z bz Γ(ν + z)Γ(−z) , (3.1)

where ν and q are real numbers (the case of ν = 0 is trivial) and q sets the asymptotic

position of the integration contour. The application of eq. (3.1) to Feynman integral

calculus was initiated in refs. [23, 24] (see also ref. [28]) and is an algorithmic procedure

which can be completely automatized, as e.g. in the Ambre.m package [31] in MATHEMATICA.

In general, the contour in eq. (3.1) is not necessarily a straight line and its standard

definition is such that the poles of Γ(ν+z) (at z = −i−ν with i being non-negative integer)

are all to the left and the poles of Γ(−z) (at non-negative integers) are all to the right of it.

The condition on the poles of the Γ-functions can be satisfied by such a contour in eq. (3.1)

if and only if q < 0 and ν > 0. However, as a key observation, ref. [27] realized straight-line

contours parallel to the imaginary axis in an algorithmic way. If ν < 0, we start with a

curved contour that fulfills the condition on the pole and then deform it into a straight

– 7 –
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Figure 2. The deformation of a curved contour into the sum of a straight line and a circle for

ν = −1/2 and q = −1/4.

line taking into account the residua of the crossed poles according to Cauchy’s theorem.

This procedure lends itself to implementation in computer codes for the evaluation and

manipulation of MB integrals, such as in the MB.m package [29].

For instance in eq. (3.1), if ν = −1/2, a possible good choice for q is q = −1/4.

The curved contour depicted in figure 2 on the left fulfills the conditions on the poles of

the Γ-functions. Contour deformation results in a straight line and a circle around the

pole at z = −ν = 1/2 as shown graphically in figure 2 on the right. Therefore, the MB

representation of (a+ b)1/2 in terms of a vertical straight line contour is given by

(a+ b)1/2 =
1

Γ(−1/2)

∫ −1/4+i∞

−1/4−i∞

dz

2πi
a1/2−z bz Γ(−1/2 + z)Γ(−z) +

√
b , (3.2)

where the first term corresponds to the integral along the straight line with q = −1/4 and

the second one to the integral along a circle surrounding the pole in z = 1/2 and evaluated

according to Cauchy’s theorem. Note that eq. (3.1) is not valid for negative integer values

of ν because of Γ(ν) in the denominator. In these cases we use the binomial expansion

1

(a+ b)ν
=

−ν∑

i=0

(−ν
i

)
aib−ν−i , for ν being negative integer. (3.3)

We use eqs. (3.1) and (3.3) to convert all sums in the integrands of the soft, collinear

and iterated integrals of section 2 into products. Then, we apply the relations

(1 − x) =

∫ 1

0
dy y δ(1 − x− y) , (3.4)

and
∫ 1

0

n∏

i=1

dxi x
pi−1
i δ


1 −

n∑

j=1

xj


 =

n∏

i=1

Γ(pi)
/
Γ




n∑

j=1

pj


 , (3.5)
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to obtain a representation of the original integrals in terms of MB integrals where all the

integrations over α, v, cos(θ), cos(φ) are performed and only complex integrations along

straight lines parallel to the imaginary axis are left following the procedure discussed below

eq. (3.1). Upon deformation of the curved complex contours all singularities in ǫ are ex-

tracted so that it is safe to expand in ǫ around zero before doing the complex integration.

In this way, the MB representations of the required coefficients of the Laurent expansions

of the integrals of section 2 are obtained. In the next step we convert the complex contour

integrations into harmonic sums using Cauchy’s theorem and finally we evaluate the sums.

For the computation of all the harmonic sums we have used algorithms for harmonic and

nested sums of refs. [32, 33] as implemented in the XSummer package [34]. Typically, sym-

bolic summation of single-scale nested sums leads at intermediate stages of the calculation

to harmonic polylogarithms (HPLs) (see ref. [35] for a definition). However, in all cases

where analytic result have been obtained by summing series of residues, the HPLs could

be converted to standard polylogarithms (see also ref. [21] for a discussion of the class of

functions appearing in the integrated real-virtual counterterms).

As an example let us consider the following integral:

E(x; ǫ, d0) = x2

∫ 1

0
dαα−1−ǫ (1 − α)2d0 [α+ (1 − α)x]−1−ǫ [2α + (1 − α)x]−1 , (3.6)

which is a typical contribution to the collinear integrals defined in eq. (2.5). The integral

in eq. (3.6) is clearly divergent in the limit ǫ = 0 due to the factor α−1−ǫ in its integrand.

The first step is to write the MB representation of the integral in eq. (3.6). To do this we

use eq. (3.1) twice then eqs. (3.4) and (3.5). We obtain

E(x; ǫ, d0) =

∫ q1+i∞

q1−i∞

dz1
2πi

∫ q2+i∞

q2−i∞

dz2
2πi

2z2 x−ǫ−z1−z2

×Γ

(
−z1, −z2, 2d0−1−ǫ−z1−z2, 1+ǫ+z1, 1+z2, −ǫ+z1+z2

2d0 − 1 − 2ǫ, 1 + ǫ

)
, (3.7)

where we have introduced the notation

Γ

(
a1, a2, . . . , an

b1, b2, . . . , bm

)
=

n∏

i=1

Γ(ai)/
m∏

j=1

Γ(bj) . (3.8)

For d0 ≥ 2 we choose q1 = −1/4 and q2 = −1/8 and curved contours such that the real parts

of the arguments of all Γ-functions remain positive on them. Note that this implements

the requirement that the contour separates the left poles from the right ones. In order to

use straight-line contours, we must add contributions from two residua: the first is due to

the residue coming from the pole in z2 = ǫ− z1 and then in the resulting one-dimensional

MB integral the second is due to the residue in z1 = ǫ. Adding these contributions to the

starting representation of eq. (3.7), we find the MB representation of eq. (3.6) with ǫ close
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to zero to be given by:

E(x; ǫ, d0) = x−2ǫΓ

(
−ǫ, 1 + 2ǫ

1 + ǫ

)

+

∫ q1+i∞

q1−i∞

dz1
2πi

2ǫ−z1 x−2ǫΓ

(
−z1, −ǫ+ z1, 1 + ǫ+ z1, 1 + ǫ− z1

1 + ǫ

)

+

∫ q1+i∞

q1−i∞

dz1
2πi

∫ q2+i∞

q2−i∞

dz2
2πi

2z2 x−ǫ−z1−z2

×Γ

(
−z1, −z2, 2d0−1−ǫ− z1−z2, 1+ǫ+z1, 1+z2, −ǫ+z1+z2

2d0 − 1 − 2ǫ, 1 + ǫ

)
. (3.9)

At this point we see that the singularity in ǫ = 0 is isolated in the first term of this

equation. In particular the pole comes from the factor Γ(−ǫ) of this term. This shows

that the extraction of poles comes out in a very convenient way: in practice we have only

deformed contours and computed residua. As a matter of fact, this is one of the strong

points in the application of MB methods to phase space integrals, and the straightforward

way of extracting infrared poles has been already discussed in refs. [36, 37].

As a next step we can perform the expansion around ǫ = 0 and we obtain

E(x; ǫ, d0) = −1

ǫ
+ 2 log(x) +

∫ q1+i∞

q1−i∞

dz1
2πi

2−z1Γ(1 − z1, −z1, z1, 1 + z1)

+

∫ q1+i∞

q1−i∞

dz1
2πi

∫ q2+i∞

q2−i∞

dz2
2πi

2z2 x−z1−z2

×Γ

(
−z1, −z2, 2d0 − 1 − z1 − z2, 1 + z1, 1 + z2, z1 + z2

2d0 − 1

)
. (3.10)

The first integral can be easily computed. We close the contour to the right and compute

the residua coming from the poles enclosed in it at z1 = n; n ≥ 0. The residua are given by

(1/2)n log(2). Thus, multiplying by an overall minus sign due to the clockwise orientation

of the contour, we find

∫ q1+i∞

q1−i∞

dz1
2πi

2−z1Γ(1 − z1, −z1, z1, 1 + z1) = −
∞∑

n=0

(1/2)n log(2) = −2 log(2) . (3.11)

Next we evaluate the second integral closing both contours to the left. We begin with the

integration over the variable z1 and we have two different Γ-functions that contribute with

poles. The first one is Γ(1 + z1) which exhibits poles in z1 = −n; n ≥ 1 and the second

one is Γ(z1 + z2) which contributes with poles in z1 = −n − z2; n ≥ 1. Computing these
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residua, we obtain for the second integral

∫ q1+i∞

q1−i∞

dz1
2πi

∫ q2+i∞

q2−i∞

dz2
2πi

2z2 x−z1−z2Γ

(
−z1, −z2, 2d0−1−z1−z2, 1+z1, 1+z2, z1+z2

2d0 − 1

)

=

∞∑

n=1

∫ q2+i∞

q2−i∞

dz2
2πi

[
(−1)n+1

(n− 1)!
2z2 xn−z2 Γ

(
n, −z2, 2d0−1+n− z2, 1+z2, −n+z2

2d0 − 1

)

+
(−x)n
n!

2z2 Γ

(
2d0−1+n, 1−n−z2, −z2, 1+z2, n+z2

2d0 − 1

)]
. (3.12)

Now we can do the remaining integration over z2. In this case the poles of both the

integrands are in z2 = −m; m ≥ 1 and the corresponding residua are given by

E(x; ǫ, d0) = −1

ǫ
+ 2 log

(x
2

)
− log(2)

∞∑

m,n=1

(
1

2

)m

xn

(
2d0 − 2 + n

n

)
(3.13)

−
∞∑

m,n=1

(x
2

)m
xn

(
2d0−2+m+n

m+ n

)[
S1(2d0−2+m+n)−S1(m+n)+log

(x
2

)]
,

where the harmonic sums S1(n) are defined as [32, 33]

S1(n) =

n∑

i=1

1

i
= ψ(n + 1) + γE , (3.14)

with γE being Euler’s constant and ψ(x) being the polygamma function, i.e. the first

derivative of the logarithm of the Γ-function. The first double sum amounts to

∞∑

m,n=1

(
1

2

)m

xn

(
2d0 − 2 + n

n

)
= −

(
1 − 1

(1 − x)2d0−1

)
. (3.15)

We are not able to perform the second summation for arbitrary d0. However, choosing

integer values, d0 ≥ 2, these sums simplify significantly. Indeed, if d0 is a positive integer,

then both
(

2d0−2+m+n

m+ n

)
,

(
2d0−2+m+n

m+ n

)
[S1(2d0−2+m+n)−S1(m+n)] , (3.16)

are polynomials in m and n. This implies that the double sums in eq. (3.13) can be written

in terms of the functions

∞∑

n=1

xn

nk
=





Lik(x) if k ≥ 0 ,

1
(1−x)1−k

∑−k−1
i=0

〈−k
i

〉
x−k−i if k < 0 ,

(3.17)

where Lik(x) are the classical polylogarithms [38] and
〈−k
i

〉
are the Eulerian numbers:

〈−k
i

〉
=

i+1∑

j=0

(−1)j
(−k + 1

j

)
(i− j + 1)−k; k < 0. (3.18)
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Therefore, eq. (3.13) becomes for example with the choice d0 = 2,

E(x; ǫ, d0) = −1

ǫ
+ log(2)

(
1 − 1

(1 − x)3

)
− x2(3x2 − 15x+ 14)

2(1 − x)2(2 − x)2

+
(x6−9x5+33x4−78x3+108x2−72x+16)

(1 − x)3(2 − x)3
log
(x

2

)
+ O(ǫ) . (3.19)

Looking at this expression we notice that even if the integral in eq. (3.6) is well defined for

x = 1 or x = 2 some of its individual terms diverge in these limits. Nevertheless, the full

result has a well defined limit in x = 1 or x = 2. Indeed,

lim
x→1

E(x; ǫ, d0) = −1

ǫ
+

53

6
− 16 log(2) + O(ǫ) , (3.20)

lim
x→2

E(x; ǫ, d0) = −1

ǫ
− 8

3
+ 2 log(2) + O(ǫ) . (3.21)

This completes the discussion of our example and demonstrates that the Laurent coef-

ficients are given by simple functions in x only. Looking back at how eq. (3.1) has enabled

us to arrive at eq. (3.7) starting from eq. (3.6) it is obvious that more complicated integrals

such as nested ones defined in section 2.2 result in increased numbers of Mellin integrations

and shifted arguments of the Γ-functions. Also, in the case of nested integrals the order

of the singularities is higher. However, the extraction of the poles in ǫ always reduces the

dimensionality of the MB integrals (in our example from two to zero). Hence, in general

if we start from a high-dimensional MB representation, the contributions to the poles’

coefficients have a much lower dimensionality of the Mellin integrals, which allows for an

analytic computation of the coefficients of the poles in the ǫ expansion even for the most

complicated integrals. This example also shows that for the analytic computation by means

of a MB representation one should choose d0, d
′
0 to be positive integers and transform the

regions of integrations in the integrals defined in section 2 to [0, 1]. In this work we simply

choose α0 = y0 = 1 and consider the cases d0 = d′0 = 2, 3 which as discussed in ref. [22] are

the natural choices for the infrared subtraction for processes with two and three outgoing

jets respectively. Nevertheless, we stress that in principle any choice of d0, d
′
0 ≥ 2 can be

used in a computation of m-jet production, for any m. Thus there is no need to recompute

any integrals even for processes with more than three jets. Furthermore, the appearance of

a hypergeometric function in the integrand of eq. (3.6) as happens for example in the last

row of table 1 does not essentially change the complexity of the computation. The reason

is that the hypergeometric function 2F1 has a simple MB representation:

2F1(a, b, c;w) =

∫ q+i∞

q−i∞

dz

2πi
(−w)z Γ

(
c, a+ z, b+ z, −z

a, b, c+ z

)
, (3.22)

where the integration contour separates the poles of the Γ(· · ·+z) functions from the poles

of the Γ(· · · − z) function as usual.

In closing this section, we would like to mention another virtue of the MB method. For

a given phase space integral of section 2, the corresponding MB representations show good
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convergence properties if evaluated numerically along the complex contours. Thus, the mul-

tidimensional numerical integration of MB integrals, such as in eq. (3.9) is straightforward

with the help of the CUBA library [39], which provides an independent check. Moreover,

it also presents a quick and reliable way of obtaining numerical results for the (smooth)

O(ǫ0) terms in the Laurent expansions of all integrals for the real-virtual counterterms

in the paper.

4 Collinear integrals I

In this section, we show the analytic results for the collinear integrals defined in eq. (2.5)

for which the case κ = 0 is needed only for the first row in table 1 and κ = 1 is needed

for all of them. Analytic expressions for the first two cases of table 1 have already been

computed in ref. [21]. Here we fix d0 = 3 and give the explicit expressions for this case as

an illustration of the form of our results. For the Laurent expansion we obtain

I
(
x; ǫ;α0 = 1, d0;κ, k, δ, g

(±)
I

)
=

δk,−1

2(2 − δ)

1

ǫ2
−
[
2δk,−1 log(x)

3 − δ
+

1 − δk,−1

2[1 + k(1 − δk,−1)]

]
1

ǫ

+ δκ,1 G(±)
I,k (x) + F(x; ǫ, d0, k) + O(ǫ), (4.1)

where I = A,B,C,D (see table 1), k = −1, 0, 1, 2 and δi,j is the usual Kronecker δ. Here

we have introduced the two functions G(±)
I,k (x) and F(x; ǫ, d0, k). The function G(±)

I,k is a

matrix in I (rows) and k (columns) defined as follows:

G(±)
I,k (x) =




2
3ζ2 + 1

3 log2(x) 1 1
2

13
36

(
5
8 ± 5

8

)
ζ2 +

(
1
2 ∓ 1

2

)
log2(x) 1 1

2 ± 1
4

13
16 ± 1

4

(
2
3 ± 1

2

)
ζ2 + 1

3 log2(x) 1 ± 1
2

1
2 ± 3

8
13
36 ± 11

36

(
13
36 ∓ 1

16

)
ζ2 +

(
1
2 ± 1

2

)
log2(x) 1 ± 1

2
1
2 ± 1

8
13
36 ± 1

18




, (4.2)

and choosing e.g. d0 = 3 for the function F(x; ǫ, d0,−1), we obtain

F(x; ǫ, d0 = 3,−1) = −3

2
ζ2 + log2(x) − 1

24
P

(5)
0,−1(x; 35,−133, 188,−116, 0, 0) (4.3)

− 1

12
P

(5)
1,−1(x; 25,−116, 212,−192, 96, 0)−P (5)

2,−1(x; 1,−5, 10,−10, 5, 2) ,

F(x; ǫ, d0 = 3, 0) = − 1

12
P

(5)
0,0 (x; 49,−193, 281,−173, 24, 0)+ P

(5)
1,0 (x; 1,−5, 10,−10, 5, 2) , (4.4)

F(x; ǫ, d0 = 3, 1) =
1

2
F(x; ǫ, d0 = 3, 0) , (4.5)

F(x; ǫ, d0 = 3, 2) =
80x

3(2 − x)6
log(2) +

(1 − x)6

36(2 − x)6
P

(11)
0,2 (x; 51,−861, 6523,−29212,

85505,−171607, 241761,−240096, 164864,−74000, 19120,−2048)

+
(1 − x)6

3(2 − x)6
P

(11)
1,2 (x; 1,−17, 130,−590, 1765,−3734, 5748,−6360,

4880,−2480, 784,−128) . (4.6)
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Figure 3. Representative results for the C-type andD-type integrals. The plots show the coefficient

of the O(ǫ0) term for k = −1 in I(x, ǫ; 1, 3; 1,−1, 0, g
(+)
C ) (left) and I(x, ǫ; 1, 3; 1,−1, 1, g

(+)
D ) (right)

with d0 = 3 and α0 = 1.

Here we introduced the short-hand notation

P
(m)
n,k (x; a(k)

m , . . . , a
(k)
0 ) =

Lin(1 − x)

(1 − x)m

m∑

i=0

a
(k)
i xi . (4.7)

According to their definition, the limit of the functions given in eqs. (4.3)–(4.6) must be

finite in x = 1 even if some terms are separately divergent. Indeed computing the limit at

x = 1 we find

lim
x→1

F(x; ǫ, d0 = 3,−1) = −8731

3600
− 3

2
ζ2 , (4.8)

lim
x→1

F(x; ǫ, d0 = 3, 0) = −257

60
, (4.9)

lim
x→1

F(x; ǫ, d0 = 3, 1) = −257

120
, (4.10)

lim
x→1

F(x; ǫ, d0 = 3, 2) = −1801

90
+

80

3
log(2) . (4.11)

In figure 3 we compare the analytic and numeric results for the ǫ0 coefficient in the

expansion of I(x, ǫ; 1, 3; 1,−1, 0, g
(+)
C ) and I(x, ǫ; 1, 3; 1,−1, 1, g

(+)
D ) for k = −1, α0 = 1

and d0 = 3 as representative examples. The agreement between the two computations is

excellent for the whole x-range. The numeric results have been obtained using a sector

decomposition [40] and Monte Carlo integration program as explained in detail in refs. [21,

22]. This shows that the expansion coefficients of all the collinear integrals I and hence

also of the collinear subtraction terms are smooth functions of the kinematical variable x.
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The complete results for all necessary cases (like in the later sections) are of consider-

able size, such that we shall not list them here. They are all contained in a MATHEMATICA

file provided with the sources of the paper on the archive http://arXiv.org.

5 Nested collinear-type I∗I and I∗J integrals

In this section we discuss the analytic computation of the nested collinear integrals defined

in eqs. (2.12)–(2.14).

As an example we show explicitly the fully analytic result for the case I ∗
Ir(x, ǫ; 1, 3;−1, 2) for which we were able to compute the complete pole structure ana-

lytically. Choosing d0 = 3 and α0 = 1 we get

I∗Ir(x, ǫ; 1, 3;−1, 2) = − 1

12

1

ǫ3
+

(
−2

9
+

1

3
log(x)

)
1

ǫ2
+

[
1

(1 − x)5

(
− 1

3
ζ2 −

25

36
log(x)

+
1

3
log(1−x) log(x)+

1

3
Li2(x)

)
+

1

(1−x/2)5
(

1

6
log
(x

2

))
+

1

(1−x)4
(
−13

36
+

1

6
log(x)

)

+
1/6

(1−x/2)4 +
1

(1−x)3
(
− 7

72
− 1

18
log(x)

)
+

1/12

(1 − x/2)3
+

1

(1 − x)2

(
−1

6
− 2

9
log(x)

)

+
1/18

(1 − x/2)2
+

1

(1 − x)

(
−25

72
− 7

12
log(x)

)
+

1/24

(1 − x/2)
+

31

216
+

1

6
log(2)

+
19

9
log(x) +

2

3
log(1 − x) log(x) − 2

3
log2(x) +

2

3
Li2(x)

]
1

ǫ
+ O(ǫ0). (5.1)

This result is representative, because its form is typical of all the collinear nested in-

tegrals. The plot of the O(ǫ−1) coefficient of this Laurent expansion for the integral

I∗Ir(x, ǫ; 1, 3;−1, 2) is shown on the right side of figure 4 together with the compari-

son with the numerical evaluation obtained using sector decomposition and Monte Carlo

integration. On the left side of figure 4 we plot the same coefficient of the Laurent ex-

pansion for the integral I∗Ii(x, ǫ; 1, 3;−1, 2). For both cases we note that the agreement

between the numerical evaluation and the analytic result is excellent. These plots show

also that the coefficients of the Laurent expansion of the nested collinear integrals I∗I are

very smooth functions of x.

We note that in the Laurent expansion of I∗Ir(x, ǫ; 1, 3;−1, 2) in eq. (5.1) there are

some terms that are divergent in x = 1. However according to its definition in eq. (2.13)

the limit in x = 1 must be finite. To verify this is a further check of the correctness of the

result. For the case of eq. (5.1) we obtain that:

lim
x→1

I∗Ir(x, ǫ; 1, 3;−1, 2) = − 1

12

1

ǫ3
− 2

9

1

ǫ2
+

(
3091

675
+

2

3
ζ2 −

31

6
log(2)

)
1

ǫ
+ O(ǫ0). (5.2)

The case of I∗Ir(x, ǫ; 1, 3; 2,−1) is more difficult. For this integral we are unable

to compute the coefficients of the ǫ poles in a fully analytic form. The reason is that

in its Mellin-Barnes representation also three-fold MB integrals are involved. For this

case the coefficient O(ǫ−3) and O(ǫ−2) are fully analytic but the coefficient of O(ǫ−1)

is semi-analytic. This last coefficient is thus written in terms of an analytic expression
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Figure 4. Representative results for the I∗I-type integrals. The plots show the coefficient of the

O(ǫ−1) term for k = −1 and l = 2 in I∗Ii(x, ǫ; 1, 3;−1, 2) (left) and I∗Ir(x, ǫ; 1, 3;−1, 2) (right)

with d0 = 3 and α0 = 1.

to which a three-fold MB integral must be added. The remaining MB integral can be

efficiently computed in MATHEMATICA by use of the package MB.m [29]. Explicitly for I∗
Ir(x, ǫ; 1, 3; 2,−1) we have:

I∗Ir(x, ǫ; 1, 3; 2,−1) = −1

6

1
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log
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+
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+
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+
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+
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+ MBint[x]

]
1

ǫ
+ O(ǫ0), (5.3)

where MBint[x] is a three-fold Mellin-Barnes integral, which for this case is given by

MBint[x] =

∫ q1+i∞

q1−i∞

dz1
2πi

∫ q2+i∞

q2−i∞

dz2
2πi

∫ q3+i∞

q3−i∞

dz3
2πi

2z3−1 x−z1−z2−z3 (5.4)

×Γ

(
−z1, 1+z1, 3−z2, −2+z2, 5−z1−z2−z3, −z3, 2+z3, z1+z2+z3

4, 4 − z2

)
,

where q1 = q2 = q3 = −1/4.

Similarly to the analytic expression of eq. (5.1), also in this case we have many terms

that are singular in x = 1 even though the full expression is well defined. Moreover in cases

like this where we have a semi-analytic expression we find that the analytic part and the

remaining part expressed in terms of a three-fold MB integral are separately well defined in

x = 1. In particular for the case of the integral I∗Ir(x, ǫ; 1, 3; 2,−1) in eq. (5.3) we obtain

the following limit:

lim
x→1

I∗Ir(x, ǫ; 1, 3; 2,−1) = −1

6

1

ǫ3
+

(
−607

60
+

40

3
log(2)

)
1

ǫ2
+

(
77349

14400
+

509

24
ζ2

−3571

45
log(2) +

40

3
log2(2) + MBint[1]

)
1

ǫ
+ O(ǫ0), (5.5)

where MBint[1] is given by

MBint[1] = 0.329808. (5.6)

This number is the result of the MB integral in eq. (5.4) with the choice x = 1 obtained using

the MATHEMATICA package MB.m [29]. Finally we note that this example is representative

for a small subset of the collinear nested integrals which have these features. They are I∗
Ii(x, ǫ; 1, 3; k, l) and I∗Ir(x, ǫ; 1, 3; k, l) with k = −1, 1, 2 and l = −1 and I∗J (x, ǫ; 1, 3, 1, 3; k)

with k = −1. The results for the pole structure of all the remaining cases of nested collinear

integrals are fully analytic.
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Figure 5. Representative results for the I∗J -type integrals. The plots show the coefficient of the

O(ǫ−1) term for k = 0 in I∗J (x, ǫ; 1, 3, 1, 3; 0) with d0 = d′0 = 3 and α0 = y0 = 1.

In table 2 we list numerical values for the non-trivial coefficients of the ǫ-poles (i.e. the

O(ǫ−2) and O(ǫ−1) coefficients) of the nested collinear integrals I∗Ir(x, ǫ; 1, 3;−1, 2) and

I∗Ir(x, ǫ; 1, 3; 2,−1). These numbers have been obtained using the fully analytic expression

in eq. (5.1) and the semi-analytic one in eq. (5.3). For this last case using the default

options of numerical integration accuracy in MB.m the relative uncertainty is at most of

order 10−5, for values of x around one. For x≪ 1, we find that the analytic part of the full

semi-analytic result contains all contributions that are divergent as x→ 0 and in fact the

numeric contribution decreases as we approach the limit. Thus the relative uncertainties

become very small. Numbers for the O(ǫ0) coefficient for the same representative integrals

are listed in table 3. In this case they have been entirely obtained evaluating their MB

representations. The relative uncertainties reported in table 3 were obtained with the

numerical integration option MaxPoints set to 5 · 107 in MB.m.

Finally in figure 5 we plot as a further example the fully analytic result for the first

order ǫ-pole for I∗J (x, ǫ; 1, 3; 0) together with the numbers obtained numerically using

sector decomposition and Monte Carlo integration. As for all other cases the agreement is

excellent and the coefficient is given by a very smooth function of x.

In this section as in the rest of the paper the representative plots are shown for the

most complicated integrals for which a full analytic result was obtained.

6 Nested soft-type J ∗J integrals

In this section we discuss the analytic computation of the integrals defined in

eqs. (2.15)–(2.17). For them we were able to compute a fully analytic result for the

coefficient of the Laurent expansion up to O(ǫ−2). The O(ǫ−1) coefficient is computed
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log10(x) I∗Ir(x, ǫ; 1, 3;−1, 2) I∗Ir(x, ǫ; 1, 3; 2,−1)

O(ǫ−2) an. O(ǫ−1) an. O(ǫ−2) an. O(ǫ−1) semi-an.

-10. -7.89751 -374.957 -15.9061 -759.736 ± 2.16974E-12

-9.66667 -7.64166 -351.104 -15.3944 -711.688 ± 2.92666E-12

-9.33333 -7.38582 -328.036 -14.8828 -665.211 ± 4.09941E-12

-9. -7.12998 -305.753 -14.3711 -620.305 ± 6.01115E-12

-8.66667 -6.87413 -284.256 -13.8594 -576.969 ± 7.79755E-12

-8.33333 -6.61829 -263.544 -13.3477 -535.205 ± 1.08953E-11

-8. -6.36245 -243.618 -12.836 -495.012 ± 1.54886E-11

-7.66667 -6.10661 -224.477 -12.3243 -456.389 ± 1.84206E-11

-7.33333 -5.85076 -206.122 -11.8126 -419.337 ± 2.91762E-11

-7. -5.59492 -188.552 -11.301 -383.857 ± 3.7663E-11

-6.66667 -5.33908 -171.768 -10.7893 -349.947 ± 4.44314E-11

-6.33333 -5.08324 -155.769 -10.2776 -317.608 ± 6.83357E-11

-6. -4.82739 -140.556 -9.7659 -286.841 ± 8.82413E-11

-5.66667 -4.57155 -126.128 -9.25423 -257.644 ± 1.11892E-10

-5.33333 -4.31571 -112.485 -8.74256 -230.019 ± 2.04546E-10

-5. -4.05986 -99.628 -8.2309 -203.965 ± 4.4044E-10

-4.66667 -3.80402 -87.556 -7.71928 -179.482 ± 9.48925E-10

-4.33333 -3.54818 -76.269 -7.20772 -156.573 ± 2.0463E-9

-4. -3.29234 -65.7665 -6.69628 -135.237 ± 4.4068E-9

-3.66667 -3.03649 -56.0477 -6.18508 -115.476 ± 9.49612E-9

-3.33333 -2.78065 -47.1111 -5.6743 -97.2944 ± 2.04532E-8

-3. -2.52481 -38.9536 -5.16432 -80.6957 ± 4.39917E-8

-2.66667 -2.26896 -31.5702 -4.65576 -65.6862 ± 9.46543E-8

-2.33333 -2.01312 -24.9522 -4.14969 -52.2723 ± 2.03847E-7

-2. -1.75728 -19.0853 -3.64776 -40.4585 ± 4.37447E-7

-1.66667 -1.50144 -13.9478 -3.15236 -30.2408 ± 9.3859E-7

-1.33333 -1.24559 -9.50936 -2.66658 -21.5965 ± 1.99232E-6

-1. -0.989751 -5.73082 -2.19382 -14.4712 ± 4.20263E-6

-0.666667 -0.733908 -2.5675 -1.73699 -8.76877 ± 8.68698E-6

-0.333333 -0.478065 0.0265877 -1.2975 -4.35339 ± 1.73005E-5

0. -0.222222 2.09462 -0.874704 -1.06702 ± 3.28582E-5

Table 2. Numerical values for the O(ǫ−2) and O(ǫ−1) coefficients of I∗Ir(x, ǫ; 1, 3;−1, 2) (second

and third column) and I∗Ir(x, ǫ; 1, 3; 2,−1) (last two columns) for various values of log10(x) (first

column). These numbers have been obtained evaluating the fully analytic expression in eq. (5.1)

and the semi-analytic one in eq. (5.3). In the last column, we also show the numerical uncertainty

as reported by MB.m.
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log10(x) I∗Ir(x, ǫ; 1, 3;−1, 2) I∗Ir(x, ǫ; 1, 3; 2,−1)

-5. -1642.9 ± 1.40321 -3380.06 ± 1.88480E-1

-4.66667 -1355.91 ± 2.483460E-1 -2792.08 ± 5.41150E-2

-4.33333 -1104.52 ± 4.46988E-2 -2276.68 ± 2.74382E-2

-4. -886.641 ± 1.16175E-2 -1829.26 ± 2.16858E-2

-3.66667 -699.73 ± 8.45731E-3 -1444.98 ± 1.81844E-2

-3.33333 -541.355 ± 7.21400E-3 -1119.05 ± 1.53613E-2

-3. -409.039 ± 5.95157E-3 -846.659 ± 1.28763E-2

-2.66667 -300.296 ± 4.91329E-3 -622.987 ± 1.08469E-2

-2.33333 -212.588 ± 3.96846E-3 -443.178 ± 8.21964E-3

-2. -143.342 ± 3.13593E-3 -302.315 ± 6.39871E-3

-1.66667 -89.9695 ± 2.39827E-3 -195.382 ± 4.76177E-3

-1.33333 -49.9198 ± 1.77836-3 -117.264 ± 3.27515E-3

-1. -20.7586 ± 1.13024E-3 -62.7773 ± 2.08013E-3

-0.666667 -0.267976 ± 6.05459E-4 -26.8568 ± 1.13023E-3

-0.333333 13.489 ± 3.05477E-4 -4.81243 ± 5.52177E-4

0. 22.1524 ± 5.24078E-4 7.37746 ± 4.201149E-4

Table 3. Numerical values for the O(ǫ0) coefficient of I∗Ir(x, ǫ; 1, 3;−1, 2) (second column) and

I∗Ir(x, ǫ; 1, 3; 2,−1) (last column) for various values of log10(x) (first column). These numbers have

been obtained evaluating their MB representation. Aalso shown are the numerical uncertainties as

reported by MB.m.

semi-analytically similarly to the nested collinear integral I∗Ir(x, ǫ; 1, 3; 2,−1) discussed in

section 5. As a representative example we show the structure of the fully analytic part of

the result for the nested soft integrals J∗J. For example choosing d′0 = 3 we have:

J∗Jik(Y ; ǫ; 1, 3) =
1

ǫ4
+

(
22

3
− 2 log(Y )

)
1

ǫ3
+ H(Y )

1

ǫ2
+ O(ǫ−1) , (6.1)

J∗Jir(Y ; ǫ; 1, 3) =
1

2

1

ǫ4
+

(
11

3
− log(Y )

)
1

ǫ3
+

(
533

36
− 22

3
log(Y ) + log2(Y )

+
3

2
Li2(1 − Y )

)
1

ǫ2
+ O(ǫ−1) (6.2)

and finally

J∗Jkr(Y ; ǫ; 1, 3)=
1

ǫ4
+

(
22

3
−2 log(Y )

)
1

ǫ3
+

(
H(Y )−ζ2+

1

2
Li2(1−Y )

)
1

ǫ2
+O(ǫ−1) . (6.3)

The function H(Y ) which appears in eqs. (6.1) and (6.3) is given by

H(Y )=
497

18
−2ζ2+

6−8Y

3(1−Y )2
+

33Y 3−117Y 2+126Y −44

3 (1 − Y )3
log(Y ) + 2 log2(Y ) + 4Li2(1− Y ).

(6.4)
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Also for this function even if some terms are singular at Y = 1, we still have that the limit

is well defined. Indeed we find

lim
Y →1

H(Y ) =
97

3
− 2 ζ2. (6.5)

For these three soft-type integrals the O(ǫ−2) coefficient has been plotted in figure 6

using its fully analytic expression eqs. (6.1) and (6.4) and its numerical evaluation obtained

using sector decomposition and Monte Carlo integration. The agreement is excellent and

the analytic result confirms that also the coefficients of the Laurent expansion for the J∗J
integrals are smooth functions of Y .

The numbers in table 4 have been obtained evaluating the nested soft integral

J∗Jik(Y ; ǫ; 1, 3) using the fully analytic expression in eq. (6.1) for the O(ǫ−3) and O(ǫ−2)

coefficients. For the O(ǫ−1) coefficient a semi-analytic expression in terms of a MB inte-

gral has been used and finally the representation only in terms of MB integrals has been

evaluated for the O(ǫ0) coefficient. In this example the relative uncertainty as reported

by MB.m with the default options for numerical integration for both the O(ǫ−1) and O(ǫ0)

coefficients is at most of order 10−5. For the semi-analyitc result, we see a similar phe-

nomenon as in the case of the I∗Ir(x, ǫ; 1, 3; 2,−1) integral: in the Y → 0 limit, the analytic

part contains all divergent contributions while the numeric part decreases. The relative

uncertainties thus become very small.

7 Nested soft-collinear K∗J integral

In this last section we discuss the pole structure of the integral defined in eq. (2.18). In

this case the result for the Laurent expansion is very simple because the integral has no

dependence on the kinematics. The coefficients of the poles in K∗J(ǫ, 1, 3) with d′0 = 3 and

y0 = 1 read:

K∗J(ǫ, 1, 3) = −1

2

1

ǫ4
− 11

3

1

ǫ3
− 557

36

1

ǫ2
+

(
−10825

216
+

5

3
ζ2 − 3 ζ3

)
1

ǫ
+ O(ǫ0). (7.1)

This completes our discussion of the analytic computation of the fundamental integrals

that contribute to the singly-unresolved counterterms.

8 Conclusions

In this work we have completed the evaluation of all integrals needed for the computation

of the integrated real-virtual counterterms of the subtraction scheme for NNLO jet cross

sections proposed in refs. [17–19]. We have discussed representative examples for all types

of soft and collinear as well as nested integrals in sections 4–7 (the complete results are

contained in a MATHEMATICA file). These integrals (i.e. their Laurent expansions in ǫ to

sufficient depth) have to be computed once and for all and their knowledge is necessary

in order to make the subtraction scheme an effective tool. We have achieved this task

by deriving MB representations for all integrals under consideration and, in a subsequent

step, we have performed analytically the summation of the nested sums over the series
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Figure 6. Representative results for the J∗J-type integrals. The plots show the coefficient of the

O(ǫ−2) term in J∗Jik(Y, ǫ; 1, 3) (left), J∗Jir(Y, ǫ; 1, 3) (right) and J∗Jkr(Y, ǫ; 1, 3) (bottom) with

d′0 = 3 and y0 = 1.

of residues. In some cases, this second step of summing the series has not been achieved

and we have resorted to a numerical evaluation of the MB integrals in the complex plane.

All MB representations for both the numerical and, if available, the analytic results have

been checked by an independent evaluation of the integrals using sector decomposition as

in ref. [22]. We have shown, that all integrals contributing to the real-virtual counterterms

are smooth functions. For practical applications, this means that all integrals (in particular

the finite in ǫ contributions) can be used in terms of interpolating tables, which can be

computed once and for all. Here we want to stress again that the tables and plots we
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log10(Y ) J∗Jik(Y ; ǫ; 1, 3)

O(ǫ−3) an. O(ǫ−2) an. O(ǫ−1) semi-an. O(ǫ0) MB

-10. 53.385 1430.99 25680. ± 1.44332E-11 347094. ± 1.69388E-3

-9.66667 51.85 1350.22 23545.6± 2.90334E-11 309328. ± 1.31378E-3

-9.33333 50.3149 1271.81 21533.4± 5.83683E-11 274744. ± 1.09995E-3

-9. 48.7799 1195.75 19639.8± 1.17829E-10 243157. ± 9.10225E-4

-8.66667 47.2448 1122.05 17861.1± 2.34891E-10 214389. ± 9.47250E-4

-8.33333 45.7098 1050.7 16193.8± 4.73302E-10 188265. ± 8.07442E-4

-8. 44.1747 981.714 14634.2± 9.39828E-10 164617. ± 6.22748E-4

-7.66667 42.6396 915.081 13178.6± 1.86537E-9 143283. ± 5.50516E-4

-7.33333 41.1046 850.805 11823.6± 3.70809E-9 124106. ± 5.03212E-4

-7. 39.5695 788.886 10565.3± 7.23854E-9 106934. ± 5.38078E-4

-6.66667 38.0345 729.322 9400.38± 1.44201E-8 91621. ± 5.52685E-4

-6.33333 36.4994 672.116 8325.04± 2.82069E-8 78027.5± 5.08049E-4

-6. 34.9644 617.265 7335.7± 5.49916E-8 66018.2± 5.08676E-4

-5.66667 33.4293 564.771 6428.75± 1.05801E-7 55463.9± 5.09976E-4

-5.33333 31.8942 514.633 5600.58± 2.03064E-7 46240.8± 4.63345E-4

-5. 30.3592 466.852 4847.56± 3.86389E-7 38230.9± 5.01881E-4

-4.66667 28.8241 421.427 4166.08± 7.45290E-7 31321.6± 6.62424E-4

-4.33333 27.2891 378.358 3552.51± 1.35799E-6 25405.6± 6.96993E-4

-4. 25.754 337.645 3003.24± 2.52452E-6 20381.7± 7.53947E-4

-3.66667 24.219 299.287 2514.63± 4.73890E-6 16153.6± 7.61827E-4

-3.33333 22.6839 263.283 2083.06± 8.67357E-6 12631. ± 8.70475E-4

-3. 21.1488 229.632 1704.89± 1.59261E-5 9728.88± 8.12022E-4

-2.66667 19.6138 198.33 1376.45± 2.79802E-5 7367.63± 8.23619E-4

-2.33333 18.0787 169.37 1094.05± 4.80260E-5 5473.13± 9.09435E-4

-2. 16.5437 142.739 853.961± 8.03383E-5 3976.65± 1.09059E-3

-1.66667 15.0086 118.417 652.369± 1.30870E-4 2814.76± 1.41898E-3

-1.33333 13.4736 96.3641 485.392± 2.06356E-4 1929.49± 1.90893E-3

-1. 11.9385 76.5204 349.046± 3.17701E-4 1268.34± 2.67185E-3

-0.666667 10.4034 58.7892 239.262± 4.48758E-4 784.581± 3.65297E-3

-0.333333 8.86839 43.0286 151.932± 5.96048E-4 437.509± 4.88145E-3

0. 7.33333 29.0435 82.998± 7.61558E-4 192.684± 6.83182E-3

Table 4. Numerical values for the O(ǫ−3), O(ǫ−2), O(ǫ−1) and O(ǫ0) coefficients of J∗Jik(x; ǫ; 1, 3)

for various values of log10(Y ). The numbers have been obtained from eq. (6.1), the semi-analytic

one for the O(ǫ−1) coefficient and MB integrals for the O(ǫ0) coefficient. In the last two columns,

we also show the numerical uncertainties as reported by MB.m.
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have shown are for demonstration purposes only and that obtaining the high resolution

interpolating tables needed for the computation of an actual cross section is straightforward.

Increasing the accuracy of each entry is feasible as well, if needed, thanks to the numerical

integration options implemented in MB.m.

The integrals discussed in this paper appear when integrating the subtraction terms

that regularize the real-virtual NNLO correction to the jet cross section, see ref. [18].

The final step in finishing the definition of the subtraction scheme is the computation of

the integrated counterterms corresponding to the subtraction terms that regularize the

doubly-real NNLO contribution, see ref. [19]. The iterated singly-unresolved counterterms

(those labeled by A12 in ref. [19]) are almost identical to the ones considered in this paper.

As regards the doubly-unresolved counterterms (those labeled by A2 in ref. [19]), some

integrals that appear there are more cumbersome than the integrals presently considered,

but nevertheless, their analytical structure is essentially the same. Therefore we expect that

the techniques of the present paper will be straightforwardly applicable for the computation

of these remaining contributions.

Files of our results can be obtained from the preprint server http://arXiv.org by

downloading the source. They are also available at [41] or from the authors upon request.
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