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ABSTRACT: We present analytic expressions of all integrals required to complete the explicit
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1 Introduction

Precision predictions in perturbative Quantum Chromodynamics (QCD) at colliders de-
mand calculating physical observables beyond leading order (LO) accuracy and, in the
traditional approach to higher order predictions with fully differential kinematics, real
and virtual corrections are separately evaluated. Integration over the phase space then
requires a consistent treatment of the infrared singularities before any numerical compu-
tation may be performed. At next-to-leading order (NLO), infrared divergences can be
handled using a subtraction scheme, which exploits the universal structure of the kine-
matical singularities of QCD matrix elements. The necessary (process-independent) coun-
terterms regularize the virtual corrections at one loop and the real emission phase space
integrals simultaneously [1].

At next-to-next-to-leading order (NNLO), the calculation of the radiative corrections
to fully differential cross sections is a challenging problem and various extensions of the
subtraction method at NNLO have been proposed, see e.g. refs. [2-5]. Currently, the avail-
able results for electron-positron annihilation at NNLO include total rates [6-8] and event
shapes [9, 10] for the process e"e™ — 3 jets and are all based on the antenna subtraction
method [11-13]. On the other hand for colorless final states, such as vector boson or Higgs
boson production at hadron colliders dedicated subtraction schemes at NNLO [14, 15] have
been applied. The infrared structure of scattering processes with three or more colored par-
tons is involved if calculated at NNLO with the antenna subtraction method [16] — a fact



which has motivated the formulation of alternative subtraction schemes. In particular,
refs. [17-19] introduce a scheme for computing NNLO corrections to QCD jet cross sec-
tions for processes without colored partons in the initial state and an arbitrary number of
massless particles (colored or colorless) in the final state. Very recently, following the steps
of ref. [17], this subtraction scheme has been extended to cross sections for hadron-initiated
processes [20], although yet to NLO accuracy only, but in a way which is NNLO-compatible.

Any subtraction scheme is of practical utility only after the counterterms for the regu-
larization of the real emissions are integrated over the phase space of the unresolved partons.
In the scheme of refs. [17-19] these counterterms are universal (but complete only for pro-
cesses without colored particles in the initial state) and, therefore can be computed once
and for all. Their knowledge is necessary to regularize the infrared divergences appearing in
the virtual corrections. Some of the integrals needed explicitly in the so-called real-virtual
counterterms of this scheme have been calculated in refs. [21, 22]. In the present paper we
complete this task by computing all integrals needed for the the real-virtual counterterms
in the subtraction scheme of refs. [17-19] by means of Mellin-Barnes (MB) representations.
The use of MB integrals when dealing with Feynman integral calculus has proved powerful
in the last years. MB integrals were first applied to Feynman integrals in refs. [23, 24]
and pioneering work has been performed since then in refs. [25-27] (see also ref. [28] and
references therein for many other examples). For a given integral the MB representation
replaces the power of a sum in the integrand by a product of the individual terms of the sum
raised to some other powers. This leads then to integrals over certain complex contours
of I'-functions. As a crucial point it is then very convenient with this MB representation
to resolve all singularities in the limit ¢ = 0 within dimensional regularization, d = 4 — 2e.
In this paper, we adapt the MB method to derive analytic expressions for all integrals
appearing in the real-virtual counterterms of refs. [17-19].

Let us briefly discuss the merits of the analytic approach for the computation of the
integrated subtraction terms. First of all, in a higher-order computation, the e poles of the
integrated subtraction terms need to cancel the corresponding e poles coming from the loop
matrix elements in the virtual corrections. The cancellation of these poles can be demon-
strated most convincingly once the pole structure of the integrated subtraction terms is
exhibited analytically. Second, in terms of speed and precision of the evaluation, analytic
results are very fast and very accurate compared to numerical ones. Moreover, they demon-
strate that the final result consists of smooth functions only. Nevertheless also the numerical
evaluation of the integrated counterterms has its utility, because it serves as an independent
check. Then, there are indeed some cases, where it is very difficult to find the analytic com-
putation of the multi-dimensional MB integral and only the complex numerical integration
can be carried out. In these cases, however, the method of MB integrals provides a fast and
reliable way to obtain the final results with small numerical uncertainties. From a practical
point of view, the combination of both, analytic and numerical evaluations of all MB inte-
grals implies that the final results for the integrated real-virtual counterterms can be conve-
niently given e.g. in the form of interpolating tables which can be computed once and for all.

This suffices for any practical application, because in an actual computation the rela-
tive uncertainty associated with the numerical phase space integrations is generally much
greater than that of the integrated subtraction terms.



Figure 1. Graphical representations of the momentum mappings and the implied phase space
factorization: collinear (left) and soft momentum mapping (right).

The outline of the paper is the following. In section 2 we briefly review the phase
space integrals of the real-virtual corrections at NNLO and we define the integrals of the
subtraction terms that we will consider in this paper. In section 3 we present a brief
explanation of the method of MB representations. We outline the steps of our calculation
and we also discuss explicitly an example to display the typical structure of the integrals we
are interested in. In section 4 we complete the analytic evaluation of all integrals needed
for integrated collinear counterterms. Next, in sections 5-7 we compute also all different
types of the nested integrals. Finally in section 8 we present the conclusions of this work.

2 Integrals needed for the integrated subtraction terms

The subtraction method developed in refs. [18, 19] relies on the universal soft and collinear
factorization properties of QCD squared matrix elements. Once the subtraction scheme is
defined, one has to integrate the subtraction terms over the factorized phase space of the
unresolved parton(s). This is the content of the present work (see also ref. [21]).

There are two crucial elements in the formulation of a subtraction scheme beyond
NLO. Firstly, the factorization formulae should disentangle the overlaps in soft-singular
factors and collinear singularities in order to avoid multiple subtractions and a simple
solution to this problem has been given in ref. [30]. Secondly, because the factorization
formulae are valid only in the strict soft and collinear limits, they have to be extended
to the whole phase space. Typically, this requires a mapping of the original n momenta
{p},, = {p1,...,pn} in an n-parton matrix element at any order in perturbation theory to
m momenta {p},, = {p1,...,Pm} in such a way, that momentum conservation is preserved.
Here m denotes the number of hard partons and n — m is the number of unresolved ones.

The original n-particle phase space of total momentum ) reads

n d, n
dpn(p1, - o Q) =] [ (zi%&r (p?) (2m)%6 <Q - Zm) : (2.1)
i=1

=1

and, for a given mapping, one obtains the phase-space factorization as

don({p}n; Q) = dom({P}m; Q) [APn—mm ({P}n—m; Q)] 5 (2.2)

which was first introduced in ref. [1] in the context of computing QCD corrections at NLO.
In this paper we are concerned with the integrals of the singly-unresolved counterterms
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Table 1. The values of ¢ and g§i)(zr) for which eq. (2.5) needs to be evaluated.

(i.e. the case m = 1), which imply two types of mappings:

e 25 Y = G Birs B} (2.3)
) (T A (2.4)

In the collinear momentum mapping Cir, in eq. (2.3) the momenta p!" and p}" are replaced by
a single momentum p, and all other momenta are rescaled, while for soft-type subtractions,
Srin eq. (2.4) the momentum p}’, that may become soft, is missing from the set, and all
other momenta are rescaled and transformed by a proper Lorentz transformation. Both
momentum mappings and the corresponding factorization of the phase-space measure are
represented graphically in figure 1, where the symbol ® stands for the convolution as
implied by eq. (2.2). The integration of the singly-unresolved subtraction terms requires
three basic types of integrals over the corresponding factorized phase space, as well as
iterations of these (nested integrals are denoted by a ). All necessary integrals were
derived in refs. [21, 22].

2.1 Basic integrals

The three basic integrals are those used in the collinear, soft and soft-collinear subtraction
counterterms. The collinear integrals have the general form

Qo
7z <x; €, o, do; K, k, 0, g§i)) = x/ dov o= 1= (HR)e (1—a)d a4+ (1 - 04)36]*1*(””””)6
0

« /0 1dv[v(1—v)]—f<m>m€g§i><m> o (25)

2a+(1—a)z 20+ (1—a)x

These integrals need to be known as a function of x € [0,1] in a Laurent-expansion
in € for Kk = —1,0,1,2. The necessary values of § and the expressions for the functions
g}i) are given in table 1. Here xk = 0,1 for the first row and x = 1 for all other cases.
Analytic expressions for all cases corresponding to the first two rows of table 1 were derived
in ref. [21] and contain the first five terms in the e-expansion. We compute all cases anew
and present our results explicitly in section 4. The other parameters o € (0, 1] and dy in
eq. (2.5) will be specified in section 3. Our analytic results for these integrals include all

the coefficients of the poles in € and the first three terms in the e-expansion.



Next, the soft subtractions require the integral

(1 —e)
- . . _ _ 1+ 14+re, 14+
j(}%k,Qv €,90,dy; K) = _(4}/%@) nst( Ke “E)(cos )

Yo ,
« /0 dy y—1—2(1+:"€)6(1 - y)dO—I—f@E ’ (2.6)

as a function of Y3; , € [0,1] in a Laurent expansion around € = 0, where QEF) (cos x)
denotes the angular integral in d-dimensions

Q) (cos x) :/

-1

1 1

d(cos ) (si1r119)_26 /_1d(cos ©) (sin @)_1_26

x (1 — cos®) (1 — cos x cos ) — sin y sin ¥ cos @) ¥, (2.7)
with
cosy =1—-2Y5 . (2.8)

For the present paper the exact definition of the kinematic variables x and Y;; 0 is
unimportant, nevertheless we recall their definition to make their physical meaning explicit.
The kinematic variable x is given by

_ 2]5@'7" ) Q
Tr = Q2 5

where p;, is the momentum of the parent parton in the (ir) — i+ splitting, which appears

(2.9)

on the right hand side of eq. (2.3) above, while @) is the total incoming momentum. We
note that in the strict collinear limit we have p;. — p; + pr. The kinematic variable Y 0
is defined as )
1 Q“(pi-Pr)
Yer = —— = 2.10
5730 Q) Q) (210)

Finally, the soft-collinear subtractions lead to the integral

Yo ) 1
K(e, yo, do; k) = 2/ dyy~ (1 —y)dO_l/ d(cos ) (sin )~
-1

0
21—y) 1" 21— [ N e N—1-2¢
X[Hy(l—cosﬁ)} 27T (1—2¢) /ld(COW) (sin p) ., (2.11)

which does not depend on kinematical variables. The integrals J and K in egs. (2.6)
and (2.11) have been computed in ref. [21] for all relevant parameters in yo, df, and k. We
have evaluated these soft and soft-collinear integrals, too, and we have checked that the
two results agree numerically. We do not deal with the cases J and K in this paper.

2.2 Nested integrals

In a NNLO computation, also iterations of the above integrals appear. In this paper we
complete the list of nested integrals necessary for the integrated real-virtual counterterms,
in particular we cover all cases which have not been addressed in ref. [21].



Of the nested integrals, which we generally denote by a star *, three are collinear
integrals with one of the basic types in its argument,

«@Q 1
I+L;(x; €, a0, dos k1) = x/ da/ dva 71— a)?® o+ (1 —a)z] 1€
0 0

a+(1—a)mr <a+(1—a)x(1—v)

1—-v)]°¢ ; dp;0,1,0,1 2.12
X[U( U)] |:20[—|—(1—O[)CE 20[—|—(1—O[)$ ; €, 0, ana ,Oa > ) ( )

g 1
I+L, (x; €, 0, dos Ky 1) = x/ da/ dva 17¢(1 —a)?*® a4 (1 - a)z] 1€
0 0

a—i—(l—a)mv]k < a+(1—a)zv
20+ (1 —a)x 20+ (1 — o)z

x[v(1 —wv)]"¢ [ 1€, 00,do;0,1,0, 1) ,  (2.13)
which we need for k, [ = —1,0,1,2, and

«@Q 1
L7 (w0, dosyns digh) = o [ da [ dvam = (-api fa s (- el (219)
0 0

_Ja+ (1 -a)zw]”
x[v(1 —v)] [m}
oot (1 —o))at (=)
Xj<(0‘+(1—0<)96v)(04+(1—a)m(l_v))xz767?/0ado70> ,

for k = —1,0,1,2. Both, Z:Z and Zx7 are needed as a function of z € [0,1] in an e-expansion
with Z and J given in egs. (2.5) and (2.6), respectively. A discussion about the choice of
the relevant parameters oy, do, yo and dj, is given at the end of section 3 and details of the
computation are also given in section 5.

Three other iterated integrals are defined as soft integrals with other soft integrals
appearing in the argument,

F2(1 — 6) ! . —2¢
j*ka‘(YV;l;Qﬂ €, Y0, dé]) = —8YV;];7Q m /1 d(COS ’19) (Sll’l ’19)

1
X / d(cos ) (sin @) 17%(1 — cos ) !
-1

Yo ,
X / dyy=172¢(1 — y)%[2 — (1 + cos x) cos ¥ — sin x sin ¥ cos ]
0
41 —y)Y-

ik.Q ,
; Y ?d ’0 9
Xj<[2_y(l+COSﬁ)][z—y(l—i-cosXcosz?—i—sinxsinvﬂcomp)]’E Yo % )

(2.15)

r2(1—e¢ [* N—2e
T+Tir(Yij, 0 € Yo, dy) = —8Y3i o a1 —26) /_1 d(cos ) (sin )

1
X / d(cos ¢)(sin ) 7172 (1 — cos )
-1

x[2 — (1 + cos x) cos ¥ — sin y sin 9 cos @]

Yo / (1 —cos®)
dyy=172¢(1 — y)b : d! 2.1
X/(] yy ( y) j<2 —y(l —|—COSQ9)’€,yO’ 0’0> ) ( 6)




and

r2(1—e¢ (!
- . U — - -~ 7 3 —2e
T+Ter(Yig, g3 € Y0, dp) 8Yit o T (1= 20) /_1 d(cos ) (sin ) (2.17)

1
x/ d(cos ) (sin ) 17%(1 — cos )
—1

Yo )
X/ dyy~172¢(1—y)%[2— (1+cos x) cos ) —sin x sin ¥ cos @] !
0

!
; Y ) ,0 9
2_y(1+COSXCOS79+Sinxsinﬁcos¢)’6yo 0 >

j( (1 — cos x cos ) — sin x sin ¥ cos @)

with J given in eq. (2.6). The three integrals in egs. (2.15)—(2.17) need to be calculated
for Y3 5 € [0,1] as expansion in e. Explicit results and details of the computation (and
values for the parameters yo and dj)) for these integrals are presented in sections 3 and 6.

The final case is when the soft integral appears in the argument of a soft-collinear one,

, 21—« ! . —2¢
KxJ(€,y0,dy) = 2% /1 d(cos¥) (sin ) >

1 Yo ’
x / d(cos ) (sin )2 / dyy~ 72 (1 — )t
—1 0

2 —y(1 + cos ) 1—cos?
X
1 —cos?

; dp, 0 2.18
2—y(1+cosﬁ)’6’y07 0> > ) ( )

which is again independent of the kinematics, i.e. the coefficients of the expansion in €
are pure numbers. Details of the computation and the parameters yy and dj, are given in
sections 3 and 7.

3 The method of Mellin-Barnes representations

In this section we briefly review the essential steps in the derivation of MB representations
for the integrals of sections 2.1 and 2.2. The starting point is the well known basic formula,

g+ico
. j = P(ly) /q_ioo ;—; a4 2)T(=2) (3.1)
where v and ¢ are real numbers (the case of ¥ = 0 is trivial) and ¢ sets the asymptotic
position of the integration contour. The application of eq. (3.1) to Feynman integral
calculus was initiated in refs. [23, 24] (see also ref. [28]) and is an algorithmic procedure
which can be completely automatized, as e.g. in the Ambre .m package [31] in MATHEMATICA.

In general, the contour in eq. (3.1) is not necessarily a straight line and its standard
definition is such that the poles of I'(v+z) (at z = —i— v with ¢ being non-negative integer)
are all to the left and the poles of I'(—z) (at non-negative integers) are all to the right of it.
The condition on the poles of the I'-functions can be satisfied by such a contour in eq. (3.1)
if and only if ¢ < 0 and v > 0. However, as a key observation, ref. [27] realized straight-line
contours parallel to the imaginary axis in an algorithmic way. If v < 0, we start with a
curved contour that fulfills the condition on the pole and then deform it into a straight
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Figure 2. The deformation of a curved contour into the sum of a straight line and a circle for
v=-1/2and ¢ = —1/4.

line taking into account the residua of the crossed poles according to Cauchy’s theorem.
This procedure lends itself to implementation in computer codes for the evaluation and
manipulation of MB integrals, such as in the MB.m package [29].

For instance in eq. (3.1), if ¥ = —1/2, a possible good choice for ¢ is ¢ = —1/4.
The curved contour depicted in figure 2 on the left fulfills the conditions on the poles of
the I'-functions. Contour deformation results in a straight line and a circle around the
pole at z = —v = 1/2 as shown graphically in figure 2 on the right. Therefore, the MB
representation of (a + b)l/ 2 in terms of a vertical straight line contour is given by

1/2 1 Sl 1/2—2 1 Vb

where the first term corresponds to the integral along the straight line with ¢ = —1/4 and
the second one to the integral along a circle surrounding the pole in z = 1/2 and evaluated
according to Cauchy’s theorem. Note that eq. (3.1) is not valid for negative integer values
of v because of I'(v) in the denominator. In these cases we use the binomial expansion

1 2\ .
(a+b) = Z < Z.V> a'b™"", for v being negative integer. (3.3)
i=0

We use egs. (3.1) and (3.3) to convert all sums in the integrands of the soft, collinear

and iterated integrals of section 2 into products. Then, we apply the relations

1
(1—:6):/0 dyyd(l —z —vy), (3.4)

and

1 n n n n
/ deixfi_lé 1 —Zx]‘ = HF(Pi)/F ij ) (3.5)
0 =1 j=1 i=1 Jj=1



to obtain a representation of the original integrals in terms of MB integrals where all the
integrations over a, v, cos(), cos(¢) are performed and only complex integrations along
straight lines parallel to the imaginary axis are left following the procedure discussed below
eq. (3.1). Upon deformation of the curved complex contours all singularities in € are ex-
tracted so that it is safe to expand in e around zero before doing the complex integration.
In this way, the MB representations of the required coefficients of the Laurent expansions
of the integrals of section 2 are obtained. In the next step we convert the complex contour
integrations into harmonic sums using Cauchy’s theorem and finally we evaluate the sums.
For the computation of all the harmonic sums we have used algorithms for harmonic and
nested sums of refs. [32, 33| as implemented in the XSummer package [34]. Typically, sym-
bolic summation of single-scale nested sums leads at intermediate stages of the calculation
to harmonic polylogarithms (HPLs) (see ref. [35] for a definition). However, in all cases
where analytic result have been obtained by summing series of residues, the HPLs could
be converted to standard polylogarithms (see also ref. [21] for a discussion of the class of
functions appearing in the integrated real-virtual counterterms).

As an example let us consider the following integral:
1
E(xye,dy) = xZ/ daa "¢ (1—a)?®[a+ (1 -a)z] 720+ (1 —a)z] (3.6)
0

which is a typical contribution to the collinear integrals defined in eq. (2.5). The integral

in eq. (3.6) is clearly divergent in the limit € = 0 due to the factor a~17¢

in its integrand.
The first step is to write the MB representation of the integral in eq. (3.6). To do this we

use eq. (3.1) twice then egs. (3.4) and (3.5). We obtain

q1+ico dz q2+ioco d
1 z2 e —
E(x;e,dp) :/ — —= 2%y AT
211 21
q

1—ioo q2—ioco
«T —21, —29, 2dg—1—€—2z1—29, 14+€+21, 1+29, —€+21+20 6T
2dg — 1 —2¢, 1 + ¢
where we have introduced the notation
ai, a a - a“
1, 02, - -y
17 27 R | m 7/:1 j:1
For dy > 2 we choose ¢ = —1/4 and g2 = —1/8 and curved contours such that the real parts

of the arguments of all I'-functions remain positive on them. Note that this implements
the requirement that the contour separates the left poles from the right ones. In order to
use straight-line contours, we must add contributions from two residua: the first is due to
the residue coming from the pole in zo = € — z; and then in the resulting one-dimensional
MB integral the second is due to the residue in z; = €. Adding these contributions to the
starting representation of eq. (3.7), we find the MB representation of eq. (3.6) with e close



to zero to be given by:

—e, 1+2
E(w;e,do):x_2€P< &L 6)

1+e¢
+/q1+ioo %26_21 . —21, —€+2z1, l+e+21, 1 +e—2
qi—ico 2T 1+e€

21

q1+ioco q2+ioco
+ le dZQ 222 xiei'zlim
q 211

1—ioco g2—ioco

«T —21, =29, 2dg—1—€ — 21—z, 1+e+21, 1429, —€+21+25 . (3.9)
2dg — 1 —2¢, 1+ ¢

At this point we see that the singularity in € = 0 is isolated in the first term of this
equation. In particular the pole comes from the factor I'(—e) of this term. This shows
that the extraction of poles comes out in a very convenient way: in practice we have only
deformed contours and computed residua. As a matter of fact, this is one of the strong
points in the application of MB methods to phase space integrals, and the straightforward
way of extracting infrared poles has been already discussed in refs. [36, 37].

As a next step we can perform the expansion around € = 0 and we obtain

1 q1-+ico dz .
E(z;ye,dg) = -t 2log(z) + 9 270 (1 — 21, —21, 21, 1+ 21)
q1—ioco
+i +i
+/(I1 lood—zll q2 1<>od—z2.2z2 xfz1fz2
qi—ico 2T Jgy—ioo 27

«T —21, =29, 2dg — 1 — 21 — 29, 1 + 21, 1 + 29, 21 + 2o . (3.10)
2dp — 1

The first integral can be easily computed. We close the contour to the right and compute
the residua coming from the poles enclosed in it at z; = n; n > 0. The residua are given by
(1/2)™log(2). Thus, multiplying by an overall minus sign due to the clockwise orientation
of the contour, we find

qi+ico g %)
/ LAl 2, —z 2, L 2) = — D (1/2)" log(2) = —2 log(2).  (3.11)
qi—ico 2T e

Next we evaluate the second integral closing both contours to the left. We begin with the
integration over the variable z; and we have two different I'-functions that contribute with
poles. The first one is I'(1 + z1) which exhibits poles in z; = —n; n > 1 and the second

one is I'(z1 4+ 2z2) which contributes with poles in z; = —n — z9; n > 1. Computing these

,10,



residua, we obtain for the second integral

/q1+ioo dz ga+ico %222 R <—z1, —29, 2dg—1—2z1—29, 1421, 1429, 21—1-22)
q

1 —ioco 2—7'('1 qa—ioco 211 2d0—1

B 00 /q2+ioo % (—1)ntt o2 22 T n, —zo, 2dog—14n — z9, 1429, —n~+29
27 | (n—1)! 2dy — 1

n=1"4d2—ico

(=2)" peo <2d0—1+n, l=n—2z, —2, 142, ”+Z2> (3.12)

* n! 2d0—1

Now we can do the remaining integration over zs. In this case the poles of both the

integrands are in zo = —m; m > 1 and the corresponding residua are given by
1 T = (I\™ L (2dy—24n
E(x;e,dy) = = + 2log <§> —log(2) Z <§> x ( . > (3.13)
m,n=1
[e.9]
2dy—2
_ (g)”%n( 0 - 1‘7:4'”) [51(2d0—2+m+n)—51(m+n)+log (g)} :
m,n=1
where the harmonic sums S;(n) are defined as [32, 33]
"1
Si(n) =Y = =vn+1)+78 (3.14)

- 1
i=1

with vg being Euler’s constant and 1(z) being the polygamma function, i.e. the first
derivative of the logarithm of the I'-function. The first double sum amounts to

i <%>mx” <2d0 —n2 + n> _ (1 _ W) . (3.15)

m,n=1

We are not able to perform the second summation for arbitrary do. However, choosing
integer values, dy > 2, these sums simplify significantly. Indeed, if dy is a positive integer,
then both

<2d0—2+m—|—n> <2d0—2—|—m+n

m-+n

> [S1(2dg—2+m—+n)—Si(m+n)] , (3.16)

m-+n

are polynomials in m and n. This implies that the double sums in eq. (3.13) can be written
in terms of the functions

Liy(z) if k>0,
[e.e] xn
Zﬁ = ) ek . ' (3.17)
n=1 A=a)i=F Zi:O < ; >£C_ - if k<0,
—k
where Lig(x) are the classical polylogarithms [38] and < , > are the Eulerian numbers:
i
i+1

< _.k> =3 (-1) (‘k;“ 1) i—j+1)7% k<o (3.18)

J=0
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Therefore, eq. (3.13) becomes for example with the choice dy = 2,

1 1 22(32% — 152 + 14)

ve,dy) = —— +1og(2) (1 - -
(25— 925+ 332* — 7823 +10822 — 722+ 16) T
+ log (—
(1—-xz)32—x)3 2

)+0(). (319)

Looking at this expression we notice that even if the integral in eq. (3.6) is well defined for
x =1 or x = 2 some of its individual terms diverge in these limits. Nevertheless, the full
result has a well defined limit in x = 1 or x = 2. Indeed,

1

lim1 E(xye,do) = = + % —161og(2) + O(e) (3.20)
1

lir% E(xye,dy) = - g + 2log(2) + O(e) . (3.21)

This completes the discussion of our example and demonstrates that the Laurent coef-
ficients are given by simple functions in z only. Looking back at how eq. (3.1) has enabled
us to arrive at eq. (3.7) starting from eq. (3.6) it is obvious that more complicated integrals
such as nested ones defined in section 2.2 result in increased numbers of Mellin integrations
and shifted arguments of the I'-functions. Also, in the case of nested integrals the order
of the singularities is higher. However, the extraction of the poles in € always reduces the
dimensionality of the MB integrals (in our example from two to zero). Hence, in general
if we start from a high-dimensional MB representation, the contributions to the poles’
coefficients have a much lower dimensionality of the Mellin integrals, which allows for an
analytic computation of the coefficients of the poles in the ¢ expansion even for the most
complicated integrals. This example also shows that for the analytic computation by means
of a MB representation one should choose dy, dj, to be positive integers and transform the
regions of integrations in the integrals defined in section 2 to [0, 1]. In this work we simply
choose oy = yo = 1 and consider the cases dy = df, = 2,3 which as discussed in ref. [22] are
the natural choices for the infrared subtraction for processes with two and three outgoing
jets respectively. Nevertheless, we stress that in principle any choice of dy,dj; > 2 can be
used in a computation of m-jet production, for any m. Thus there is no need to recompute
any integrals even for processes with more than three jets. Furthermore, the appearance of
a hypergeometric function in the integrand of eq. (3.6) as happens for example in the last
row of table 1 does not essentially change the complexity of the computation. The reason
is that the hypergeometric function o} has a simple MB representation:

q+ioco _
2Fy (0, b, ¢ w) :/ e (C’ atz b+ Z) , (3.22)

q—ico 2Ti a, b, c+z

where the integration contour separates the poles of the I'(- - - 4 z) functions from the poles
of the I'(- - - — 2) function as usual.

In closing this section, we would like to mention another virtue of the MB method. For
a given phase space integral of section 2, the corresponding MB representations show good
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convergence properties if evaluated numerically along the complex contours. Thus, the mul-
tidimensional numerical integration of MB integrals, such as in eq. (3.9) is straightforward
with the help of the CUBA library [39], which provides an independent check. Moreover,
it also presents a quick and reliable way of obtaining numerical results for the (smooth)
O(e") terms in the Laurent expansions of all integrals for the real-virtual counterterms
in the paper.

4 Collinear integrals 7

In this section, we show the analytic results for the collinear integrals defined in eq. (2.5)
for which the case k = 0 is needed only for the first row in table 1 and x = 1 is needed
for all of them. Analytic expressions for the first two cases of table 1 have already been
computed in ref. [21]. Here we fix dy = 3 and give the explicit expressions for this case as
an illustration of the form of our results. For the Laurent expansion we obtain

Ok—1 1 20k, 1 log(z) 1— 0k 1 1

T (2600 =1, do; ) o %=1 2 | 2%, : 1

(x’a "0 (o 5, 20, > 2(2 —0) € 3—9 20+ k(1 — 6,—1)] ] €
461 G () + F(ase,do, k) + O(e), (41)

where I = A, B,C, D (see table 1), k = —1,0,1,2 and ¢; ; is the usual Kronecker 6. Here
we have introduced the two functions Qﬁﬁ) (x) and F(z;€,dp, k). The function Q}? is a

matrix in I (rows) and k (columns) defined as follows:

2¢) + Llog*(x) 1 ! 13
. GDe+EFhoee 1 jxi Bl
G (@) = L ()
(2+3)G+ilog’x)  1+£3 f+3 B2l

13 1 1 1 2 1 1 1 13 1
(6 F15) e+ (3£3)log’(x) 1£5 5+5 3*s

and choosing e.g. dy = 3 for the function F(x;¢,dy, —1), we obtain

3 1
Flosedo=3,-1) = —5¢ + log?(z) — ﬂpg?g(x;%, — 133,188, —116,0,0) (4.3)
L ooy o ) (.
— 73 P (:25,7116,212,-192,96,0)— P, (23 1, 5,10, -10,5,2)
1
F(zye,dy = 3,0) = —Epo(i}(x;m,—193,281,—173,24,0)+Pf?g(x;1,—5,1o,—10,5,2), (4.4)
1
F(x;e,dy =3,1) = §f(z;e,d0:3,0), (4.5)
80x (1—2)°% )
edy=3,2) = ——log(2) + ———2 P :51, —861, 6523, —29212
f($,6, 0 35 ) 3(2—.1')6 Og( >+ 36(2—.1')6 0,2 ($75 ) 86 565 37 9 9
85505, —171607, 241761, —240096, 164864, —74000, 19120, —2048)
(1 — .Z‘)G (11)
Y p :1,—17,130, —590, 1765, —3734, 5748, —6360
+3(271-)6 172 ($7 I I ) ) ) I ) )

4880, —2480, 784, —128) . (4.6)
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Figure 3. Representative results for the C-type and D-type integrals. The plots show the coefficient
of the O(e") term for k = —1 in Z(x,¢;1,3;1,—1,0, g(cﬂ) (left) and Z(x,¢;1,3;1,—1,1, gg)) (right)
with dyp = 3 and ag = 1.

Here we introduced the short-hand notation

M) (oo a®) g0y = Lin(L=2) S~ k)
Pn,k‘ (iE;CLm,...,CLO ):WZ% €T . (47)
According to their definition, the limit of the functions given in egs. (4.3)—(4.6) must be

finite in & = 1 even if some terms are separately divergent. Indeed computing the limit at
r =1 we find

. 8731 3
:}:Lnllf(x,E,do —3,—1) == —% - §C2, (48)
. 257
il_)ml F(xye,dy =3,0) = 50 (4.9)
. 257
il_)ml]:(x,e, do = 3,1) = —m s (410)
1801 80
lim F(z;e,dy = 3,2) = ——— + —log(2). (4.11)
z—1 90 3

In figure 3 we compare the analytic and numeric results for the ® coefficient in the
expansion of Z(x,e;1,3;1,—1,0,gg+)) and Z(x,e;l,?);l,—l,l,gg_)) for k = =1, ap = 1
and dg = 3 as representative examples. The agreement between the two computations is
excellent for the whole z-range. The numeric results have been obtained using a sector
decomposition [40] and Monte Carlo integration program as explained in detail in refs. [21,
22]. This shows that the expansion coefficients of all the collinear integrals Z and hence

also of the collinear subtraction terms are smooth functions of the kinematical variable x.
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The complete results for all necessary cases (like in the later sections) are of consider-
able size, such that we shall not list them here. They are all contained in a MATHEMATICA
file provided with the sources of the paper on the archive http://arXiv.org.

5 Nested collinear-type Z+Z and Z+J integrals

In this section we discuss the analytic computation of the nested collinear integrals defined
in egs. (2.12)—(2.14).

As an example we show explicitly the fully analytic result for the case Z x
Z,(x,€61,3;—1,2) for which we were able to compute the complete pole structure ana-
lytically. Choosing dy = 3 and ag = 1 we get

11 2 1 1 1 1 25
P R O R L) P R (e G R

+é log(1—x) log(:ﬂ)%—é Lb(:ﬂ)) +ﬁ <% log (g)) +ﬁ <_£+é log(m))
/ 7 /
(1—133?2)4 + (1_133)3 <_5_1i810g(x)> + 1 i ;?2)3 + a _133)2 <—é — % log(x)>

_l’_

1/18 1 25 7 1/24 31 1
Tz T U (‘5 D) 10g(””)> Tz 216 T e
+§ log(z) + g log(1 — ) log(x) — %logQ(az) + gLig(az)] % +O(). (5.1)

This result is representative, because its form is typical of all the collinear nested in-
tegrals. The plot of the O(e™!) coefficient of this Laurent expansion for the integral
IxZT.(x,€e1,3;—1,2) is shown on the right side of figure 4 together with the compari-
son with the numerical evaluation obtained using sector decomposition and Monte Carlo
integration. On the left side of figure 4 we plot the same coefficient of the Laurent ex-
pansion for the integral ZZ;(x,€;1,3; —1,2). For both cases we note that the agreement
between the numerical evaluation and the analytic result is excellent. These plots show
also that the coefficients of the Laurent expansion of the nested collinear integrals 77 are
very smooth functions of x.

We note that in the Laurent expansion of ZxZ,(z,€;1,3; —1,2) in eq. (5.1) there are
some terms that are divergent in x = 1. However according to its definition in eq. (2.13)
the limit in £ = 1 must be finite. To verify this is a further check of the correctness of the
result. For the case of eq. (5.1) we obtain that:

iLr%I*Ir(x,e; 1,3;-1,2) = —% ;3 — g ;2 + <% + % G2 — % log(2)> % +0(e). (5.2)

The case of ZxZ.(x,€;1,3;2,—1) is more difficult. For this integral we are unable
to compute the coefficients of the e¢ poles in a fully analytic form. The reason is that
in its Mellin-Barnes representation also three-fold MB integrals are involved. For this
case the coefficient O(¢™3) and O(e2) are fully analytic but the coefficient of O(e™!)
is semi-analytic. This last coefficient is thus written in terms of an analytic expression
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Figure 4. Representative results for the ZxZ-type integrals. The plots show the coefficient of the

O(e7!) term for k = —1 and | = 2 in ZxZ; (7, €;1,3; —1,2) (left) and ZxZ,.(z,¢;1,3; —1,2) (right)
with dyp = 3 and ag = 1.

to which a three-fold MB integral must be added. The remaining MB integral can be

efficiently computed in MATHEMATICA by use of the package MB.m [29]. Explicitly for Zx
Zr(z,€1,3;2,—1) we have:

ToT, (1, 61,32, —1) = —é ei?’ + [m (—1—52 log @)) + ﬁ <% 10g(:6)>

1 5 5 x 1/6 5/24 1/12
a2 (‘E T 1g log <§>> Tttt a2t ta— ey

)
5/72 1/18 5/144 1/24 148 59 1 1
—a/28 (1= x)2 22 " 0—o "=z 72 log(w)} 2
+ [m< G2 — log( )+ g log*(2) + g log(2) log(1 — x/2) + % log ()

—g log(2) log() + E log(1 — z) log(x) — g log(1 — 2/2) log(z) + g log?(x)

1 (2) + 2l >> o (— L6 S 10g(2) — 1 loa(2) log(1 — #/2)
;—Z log(z) + zl)) log(2) log(z) —|—é log(1 — x) log(x) +% log(1 — /2) log(x)

1 1 1 23 25 71
| L () L Y (e L WD
2og()+312 5 +6 ig(x )>+ ( 24C2+24 0g(2)

(1 — /25 \ 24
—Z log?(2) — g log(2) 10g(1 —xz/2) — E log(z) + g log(2) log(z) +
25 Toa(1 ) log(x) + = log (1~ —) log(z) — 2 log(x) + 2 Lia (3 ) — 15 Lials >)
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1 59 T 1 1 1 7
T 2/2) (‘@ 5 los <§>> T (‘ 6 129 36 0@

4 Tog(1 — ) log(x) + = Lig(ﬂ&)) + m (—% _ é log (2 log )
b (gt 5 os) - 2 08()) + = (% 3 log(2)+  log(v)
+ ey (3551 1980 )+ 1 (5ag - 3 108 + 5 lowa)) - %+§<
- élog(Z) 4 élog2(2) + 3 log(2) log (1~ 2+ ;—i log () — é log(2) log(:v)

+% log(1 — ) log(z) — g tog (1 2 log(x) - g log?(z)) — éng (5)+5 L i)

4 MBint[x]] % +0(eY), (5.3)

where MBint[z] is a three-fold Mellin-Barnes integral, which for this case is given by

MBjnt[x] — /Q1+100 % aaioe % gatico ng 973~ 1 g2 (5.4)
q1—ioco 27T’L qa—ioco 271'2 q3—ioco 271'2
«T <—21, 1+21, 3—20, —2+29, 5—21—29—23, —23, 2+23, Z1+Z2+Z3>
4,4 — z '

where g1 = g2 = q3 = —1/4.

Similarly to the analytic expression of eq. (5.1), also in this case we have many terms
that are singular in z = 1 even though the full expression is well defined. Moreover in cases
like this where we have a semi-analytic expression we find that the analytic part and the
remaining part expressed in terms of a three-fold MB integral are separately well defined in
x = 1. In particular for the case of the integral Z«Z,(x,¢;1,3;2, —1) in eq. (5.3) we obtain
the following limit:

11 4 1 4
hmI*I (r,6;1,3;2,—1) = ___+< 607+_01 (2 )) _24_(@4_@

21 6 60 3 14400 = 24
3571 40 1
=5 b g(2) + 5 log?(2) + MBint[l]) ~4+0(%, (5.5)
€

where MBint[1] is given by
MBint[1] = 0.329808. (5.6)

This number is the result of the MB integral in eq. (5.4) with the choice z = 1 obtained using
the MATHEMATICA package MB.m [29]. Finally we note that this example is representative
for a small subset of the collinear nested integrals which have these features. They are Zx
Zi(x,e;1,3; k, 1) and T, (z,€; 1,35 k, 1) with k = —1,1,2 and [ = —1 and Z7 (x,¢; 1, 3,1, 3; k)
with £k = —1. The results for the pole structure of all the remaining cases of nested collinear
integrals are fully analytic.
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Figure 5. Representative results for the Z+7-type integrals. The plots show the coefficient of the
O(e7 1) term for k =0 in ZxJ (z,¢;1,3,1,3;0) with dy = dj) = 3 and ag = yo = 1.

In table 2 we list numerical values for the non-trivial coefficients of the e-poles (i.e. the
O(e72) and O(e™!) coefficients) of the nested collinear integrals Z+Z,(z,¢;1,3; —1,2) and
T, (z,€;1,3;2, —1). These numbers have been obtained using the fully analytic expression
in eq. (5.1) and the semi-analytic one in eq. (5.3). For this last case using the default
options of numerical integration accuracy in MB.m the relative uncertainty is at most of
order 1075, for values of 2 around one. For x < 1, we find that the analytic part of the full
semi-analytic result contains all contributions that are divergent as x — 0 and in fact the
numeric contribution decreases as we approach the limit. Thus the relative uncertainties
become very small. Numbers for the O(€”) coefficient for the same representative integrals
are listed in table 3. In this case they have been entirely obtained evaluating their MB
representations. The relative uncertainties reported in table 3 were obtained with the
numerical integration option MaxPoints set to 5- 107 in MB.m.

Finally in figure 5 we plot as a further example the fully analytic result for the first
order e-pole for ZxJ(z,€;1,3;0) together with the numbers obtained numerically using
sector decomposition and Monte Carlo integration. As for all other cases the agreement is
excellent and the coefficient is given by a very smooth function of .

In this section as in the rest of the paper the representative plots are shown for the
most complicated integrals for which a full analytic result was obtained.

6 Nested soft-type J*J integrals

In this section we discuss the analytic computation of the integrals defined in
egs. (2.15)—(2.17). For them we were able to compute a fully analytic result for the
coefficient of the Laurent expansion up to O(e=2). The O(e~!) coefficient is computed
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logo(x) I+L,(x,€61,3;—1,2) IxZL (2, €;1,3;2,—1)
O(e72) an. | O(e™!) an. | O(e2) an. O(e™1) semi-an.

-10. -7.89751 -374.957 -15.9061 -759.736 £ 2.16974E-12
-9.66667 -7.64166 -351.104 -15.3944 -711.688 + 2.92666E-12
-9.33333 -7.38582 -328.036 -14.8828 -665.211 + 4.09941E-12
-9. -7.12998 -305.753 -14.3711 -620.305 £ 6.01115E-12
-8.66667 -6.87413 -284.256 -13.8594 -576.969 £ 7.79755E-12
-8.33333 -6.61829 -263.544 -13.3477 -535.205 £ 1.08953E-11
-8. -6.36245 -243.618 -12.836 -495.012 + 1.54886E-11
-7.66667 -6.10661 -224.477 -12.3243 -456.389 + 1.84206E-11
-7.33333 -5.85076 -206.122 -11.8126 -419.337 + 2.91762E-11
-7. -5.59492 -18